首页 > ACM题库 > HDU-杭电 > HDU 1536 S-Nim-博弈论-[解题报告] C++

HDU 1536 S-Nim-博弈论-[解题报告] C++


问题描述 :

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

  The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

  The players take turns chosing a heap and removing a positive number of beads from it.

  The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

  Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

  If the xor-sum is 0, too bad, you will lose.

  Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

  The player that takes the last bead wins.

  After the winning player’s last move the xor-sum will be 0.

  The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.


Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.


For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’. Print a newline after each test case.


2 2 5
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
2 5 12
3 2 4 7
4 2 3 7 12



using namespace std;

const int INF_MAX=0x7FFFFFFF;
const int INF_MIN=-(1<<31);

const double eps=1e-10;
const double pi=acos(-1.0);

#define pb push_back   //a.pb( )
#define chmin(a,b) ((a)<(b)?(a):(b))
#define chmax(a,b) ((a)>(b)?(a):(b))

template<class T> inline T gcd(T a,T b)//NOTES:gcd(
  {if(a<0)return gcd(-a,b);if(b<0)return gcd(a,-b);return (b==0)?a:gcd(b,a%b);}
template<class T> inline T lcm(T a,T b)//NOTES:lcm(
  {if(a<0)return lcm(-a,b);if(b<0)return lcm(a,-b);return a*(b/gcd(a,b));}

typedef pair<int, int> PII;
typedef vector<PII> VPII;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long LL;
int dir_4[4][2]={{0,1},{-1,0},{0,-1},{1,0}};
int dir_8[8][2]={{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1}};

//******* WATER ****************************************************************

const int MAXN = 10500;
bool judge[150];
int sg[MAXN];
int M[150];
const int Init = 1e7;
int Num;

void input_m()
    for(int i = 0; i < Num; i++)
    return ;

void debug()
    cout<<"sg function"<<endl;
    for(int i = 0; i < 100; i++)
        cout<<i<<" "<<sg[i]<<endl;
    return ;

void getsg()
    for(int i = 0; i < MAXN; i++)
        memset(judge, false, sizeof(judge));
        //int tsg = Init;
        for(int j = 0; j < Num; j++)
            int ps = i - M[j];
            if(ps >= 0) judge[sg[ps]] = true;
        //if(tsg == Init) tsg = 0;
        for(int j = 0; j < Num + 1; j++)
            if(judge[j] == false)
                sg[i] = j;
    return ;
int main()
	while(cin>>Num, Num)
        int num;
            int nn, tp;
            int ret = 0;
            for(int i = 0; i < nn; i++)
                ret ^= sg[tp];
            if(ret == 0) cout<<"L";
            else cout<<"W";
	return 0;


  1. 为什么for循环找到的i一定是素数叻,而且约数定理说的是n=p1^a1*p2^a2*p3^a3*…*pk^ak,而你每次取余都用的是原来的m,也就是n

  2. 约瑟夫也用说这么长……很成熟的一个问题了,分治的方法解起来o(n)就可以了,有兴趣可以看看具体数学的第一章,关于约瑟夫问题推导出了一系列的结论,很漂亮

  3. 嗯 分析得很到位,确实用模板编程能让面试官对你的印象更好。在设置辅助栈的时候可以这样:push时,比较要push的elem和辅助栈的栈顶,elem<=min.top(),则min.push(elem).否则只要push(elem)就好。在pop的时候,比较stack.top()与min.top(),if(stack.top()<=min.top()),则{stack.pop();min.pop();},否则{stack.pop();}.

  4. 代码是给出了,但是解析的也太不清晰了吧!如 13 abejkcfghid jkebfghicda
    第一步拆分为 三部分 (bejk, cfghi, d) * C(13,3),为什么要这样拆分,原则是什么?