2014
03-16

Interesting Yang Yui Triangle

Harry is a Junior middle student. He is very interested in the story told by his mathematics teacher about the Yang Hui triangle in the class yesterday. After class he wrote the following numbers to show the triangle our ancestor studied.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
……

He found many interesting things in the above triangle. It is symmetrical, and the first and the last numbers on each line is 1; there are exactly i numbers on the line i.

Then Harry studied the elements on every line deeply. Of course, his study is comprehensive.

Now he wanted to count the number of elements which are the multiple of 3 on each line. He found that the numbers of elements which are the multiple of 3 on line 2, 3, 4, 5, 6, 7, … are 0, 0, 2, 1, 0, 4, … So the numbers of elements which are not divided by 3 are 2, 3, 2, 4, 6, 3, … , respectively. But he also found that it was not an easy job to do so with the number of lines increasing. Furthermore, he is not satisfied with the research on the numbers divided only by 3. So he asked you, an erudite expert, to offer him help. Your kind help would be highly appreciated by him.

Since the result may be very large and rather difficult to compute, you only need to tell Harry the last four digits of the result.

There are multiple test cases in the input file. Each test case contains two numbers P and N , (P < 1000, N<=10^9) , where P is a prime number and N is a positive decimal integer.

P = 0, N = 0 indicates the end of input file and should not be processed by your program.

There are multiple test cases in the input file. Each test case contains two numbers P and N , (P < 1000, N<=10^9) , where P is a prime number and N is a positive decimal integer.

P = 0, N = 0 indicates the end of input file and should not be processed by your program.

3 4
3 48
0 0

Case 1: 0004
Case 2: 0012

#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
const int mod=10000;
int main()
{
int p,n,tt=0;
while(scanf("%d%d",&p,&n)!=EOF)
{
if(p==0&&n==0)
break;
int ans=1;
while(n)
{
ans*=(n%p+1);
n/=p;
if(ans>=mod)
ans%=mod;
}
printf("Case %d: %04d\n",++tt,ans);//∏(ai+1) (0=<i<=k)
}
return 0;
}
/*
一开始就被坑到了，看了白书上的中文翻译，上面说的是能被p整除的有多少个，弄的我怎么也没理解Lucas定理的说明，555555

Lucas定理：
A、B是非负整数，p是质数。AB写成p进制：A=a[n]a[n-1]...a[0]，B=b[n]b[n-1]...b[0]。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  mod p同余
即：Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)，在存在i，b[i]>a[i]时，mod值为0，所以必定整除；当对于所有i，b[i]<=a[i]时，a[i]!%p!=0,所以必定不能整除

看到一大神的证明，我觉得很不错：
//重点：
问题问C[n,i](0=<i<=n)中有多少个不能被p整除的。
分析2：
我们知道对于素数p，n！中p的幂次为
f[n!,p]=[n/p]+[n/p^2]+[n/p^3]……

那么C[n,m]中p的幂次为
f[c[n,m],p]=f[n,p]-f[n-m,p]-f[m,p]

c[n,m]不能被p整除，意味着f[n,p]=f[n-m,p]+f[m,p]
于是 [n/p^i]=[(n-m)/p^i]+[m/p^i]对任意i成立

设n的p进制表示为(ak……,a0)
设n-m的p进制表示为(bk……,b0)
设m的p进制表示为(ck……,c0)

[n/p^k]=ak=[(n-m)/p^k]+[m/p^k]=bk+ck                                                        =>ak=bk+ck
[n/p^(k-1)]=(aka(k-1))=[(n-m)/p^(k-1)]+[m/p^(k-1)]=(bkb(k-1))+(ck(ck-1))   =>a(k-1)=b(k-1)+c(k-1)
……
我们可以得到ai=bi+ci(0<=i<=k)这是充分条件。这里说明下，可以枚举c，对于ci，要保证等式成立，0<=ci<=ai,共ai+1个，所以结果是
∏(ai+1)，符合这样条件的m必定小于n(看一下就知道了);当ci>ai时，就不能存在bi>=0使等式成立

即当0=<bi<=ai时对任意i成立时 f[n,p]=f[n-m,p]+f[m,p]，即p不整除c[n,m]

所以c[n,m]不被p整除的数有 ∏(ai+1) (0=<i<=k)个。

分析2:
书上例题
设p为质数，a，b为两正整数，且a,b在p进制下表示为 a=(ak……,a0),b=(bk……,b0) 0=<ai,bi<p
证明 c[a,b]=c[ak,bk]*……*c[a0,b0](mod p)
证：
p为质数时易证 (1+x)^p=1+x^p(mod p)
(1+x)^a=(1+x)^(ak*p^k)……(1+x)^(a0) （mod p）
=(1+x^(p^k))^ak……(1+x)^a0（mod p） （1）
x^b在（1）右边式子的系数为c[ak,bk]*……*c[a0,b0]。
从而的证 c[a,b]=c[ak,bk]*……*c[a0,b0](mod p)

根据这个结论 我们可知c[a,b]=0(mod p) 当且仅当 存在bi>ai

所以c[n,m]不被p整除的数有 TT(ai+1) (0=<i<=k)个。
*/

1. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

2. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

3. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

4. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

5. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

6. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

7. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

8. 上win8win10，系统自带的杀毒软件简直省心，毛广告都没，之前上乱七八糟的软件站下软件带过来的什么一刀99级一开Windows defender马上不见

9. 第一句可以忽略不计了吧。从第二句开始分析，说明这个花色下的所有牌都会在其它里面出现，那么还剩下♠️和♦️。第三句，可以排除2和7，因为在两种花色里有。现在是第四句，因为♠️还剩下多个，只有是♦️B才能知道答案。