2015
04-10

# hdu 3758-factorial simplification-最小生成树-[解题报告]hoj

Problem Description
Peter is working on a combinatorial problem. He has carried out quite lengthy derivations and got a resulting formula that is a ratio of two products of factorials like this:

This does not surprise Peter, since factorials appear quite often in various combinatorial formulae, because n! represents the number of transpositions of n elements – one of the basic combinatorial objects.
However, Peter might have made a mistake in his derivations. He knows that the result should be an integer number and he needs to check this first. For an integer result Peter wants to simplify this formula to get a better feeling of its actual combinatorial
significance. He wants to represent the same number as a product of factorials like this.

where all ri are distinct integer numbers greater than one in the descending order (ri > ri+1 > 1), si and t are positive integers. Among all the possible representations in this form, Peter is interested in one where r1 is
the largest possible number, among those in the one where s1 is the largest possible number; among those in the one where r2 is the largest possible number; among those in the one where s2 is the largest possible number; etc,
until the remaining t cannot be further represented in this form. Peter does not care about the actual value of t. He wants to know what is the factorial-product part of his result.

Input
The input begins with an integer T. The next T blocks each represents a case. The first line of each case contains two integer numbers n and m (1 ≤ n, m ≤ 1000). The second line contains n integer numbers pi (1 ≤ pi ≤ 10 000) separated
by spaces. The third line contains m integer numbers qi (1 ≤ qi ≤ 10 000) separated by spaces.

Output
For each case, on the first line of the output write a single integer number k. Write k = -1 if the ratio of the given factorial products is not an integer. Write k = 0 if the ratio is an integer but it cannot be represented in the
desired form. Write k > 0 followed by k lines if the ratio can be represented by a factorial product as described in the problem statement. On each of the following k lines write two integers ri and si (for i = 1 … k) separated by a space.

Sample Input
3
1 2
6
4 4
1 2
6
3 4
4 2
9 2 2 2
3 4

Sample Output
-1
0
2
7 1
2 2

Author
Andrey Stankevich

Source

Recommend
notonlysuccess

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;

#define MAXN 10010

bool prime[MAXN+5];
int p[1400];
int up;
int num[1400];
int ans[MAXN][2];
vector <short> init[MAXN+2];

void Prime()
{
int i,k;
up=0;
memset(prime,0,sizeof(prime));
for (i=2;i<MAXN;i++)
{
if (prime[i]==1) continue;
k=i;
while(k*i<MAXN)
{
prime[i*k]=1;
k++;
}
p[up++]=i;
}
}

int GetNum(int t,int k)
{
if (t<k) return 0;
return t/k+GetNum(t/k,k);
}

void Init()
{
int i,j;
for (i=1;i<MAXN;i++)
{
for (j=0;j<up;j++)
{
if (i<p[j]) break;
init[i].push_back(GetNum(i,p[j]));
}
}
}

bool Check(int t,int k)
{
int i;
for (i=0;i<k;i++)
{
if (t<p[i]) break;
if (init[t][i]>num[i]) return false;
}
return true;
}

int Count(int t,int &k)
{
int i,ss,tag;
ss=100000;
for (i=0;i<k;i++)
{
if (t<p[i]) break;
ss=min(ss,num[i]/init[t][i]);
}
tag=k;
for (i=0;i<k;i++)
{
if (t<p[i]) break;
num[i]-=ss*init[t][i];
if (num[i]==0) tag=min(tag,i);
}
k=tag;
return ss;
}

int main()
{
int T,i,j,n,m,s,k,l,r,mid,now,x;
Prime();
Init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
memset(num,0,sizeof(num));
s=0;
for (i=0;i<n;i++)
{
scanf("%d",&x);
for (j=0;j<up;j++)
{
if (x<p[j]) break;
num[j]+=init[x][j];
}
s=max(s,j);
}
for (i=0;i<m;i++)
{
scanf("%d",&x);
for (j=0;j<up;j++)
{
if (x<p[j]) break;
num[j]-=init[x][j];
}
s=max(s,j);
}
k=s;
for (i=0;i<s;i++)
{
if (num[i]<0) break;
if (num[i]==0) k=min(k,i);
}
if (i<s)
{
printf("-1\n");
continue;
}
now=0;
while(1)
{
if (k==0) break;
l=1;
r=p[k]-1;
while(l<=r)
{
mid=(l+r)/2;
if (Check(mid,k)==true) l=mid+1;
else r=mid-1;
}
ans[now][0]=r;
ans[now++][1]=Count(r,k);
}
printf("%d\n",now);
for (i=0;i<now;i++)
{
printf("%d %d\n",ans[i][0],ans[i][1]);
}
}
return 0;
}


1. 记者比我蠢不蠢我无法判断，但是你比我蠢这***是可以肯定的。但从这件事来说，不是只有科技日报一家报纸提问，但是只有他一家收到了警告。可见其他记者是知道底线的。

2. 记者比我蠢不蠢我无法判断，但是你比我蠢这***是可以肯定的。但从这件事来说，不是只有科技日报一家报纸提问，但是只有他一家收到了警告。可见其他记者是知道底线的。

3. 记者比我蠢不蠢我无法判断，但是你比我蠢这***是可以肯定的。但从这件事来说，不是只有科技日报一家报纸提问，但是只有他一家收到了警告。可见其他记者是知道底线的。

4. 记者比我蠢不蠢我无法判断，但是你比我蠢这***是可以肯定的。但从这件事来说，不是只有科技日报一家报纸提问，但是只有他一家收到了警告。可见其他记者是知道底线的。

5. for(int i=1; i<=m; i++){
for(int j=1; j<=n; j++){
dp = dp [j-1] + 1;
if(s1.charAt(i-1) == s3.charAt(i+j-1))
dp = dp[i-1] + 1;
if(s2.charAt(j-1) == s3.charAt(i+j-1))
dp = Math.max(dp [j - 1] + 1, dp );
}
}
这里的代码似乎有点问题？ dp(i)(j) = dp(i)(j-1) + 1;这个例子System.out.println(ils.isInterleave("aa","dbbca", "aadbbcb"));返回的应该是false